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1. Introduction

Open string field theory originated as an attempt to find a classical theory which, upon

quantization, would reproduce the complete perturbation expansion of open string scatter-

ing diagrams [1 – 5]. Recently, it has become clear that even before quantization, classical

string field theory contains a rich amount of information about D-brane physics and, more

generally, boundary conformal field theories [6 – 25].

Indeed, there is a assumption among many string field theory practitioners that, given a

solution of the classical equations of motion of string field theory Ψ, there is a corresponding

boundary CFTΨ. Furthermore, given a boundary CFTΨ (which is in some unspecified

sense “not too far away” from the boundary CFT0 around which the string field theory

was defined), there is a classical solution Ψ which shifts us from CFT0 to CFTΨ.

This would-be duality between string fields and boundary CFTs is obfuscated by the

large amount of gauge symmetry in open string field theory. For example, if we are working
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in bosonic cubic string field theory, and the string field Ψ represents some boundary CFT,

then the string field,

Ψ′ = eΛ(Ψ +QB)e−Λ , (1.1)

should represent the same boundary CFT for any ghost number 0 string field, Λ. This

gauge symmetry has no analogue in boundary conformal field theory so, if we wish to

compare the two sides of the duality, it is useful to consider gauge-invariant quantities.

The list of known gauge-invariant objects is very short. For the bosonic string, one

has the classical action [1],

S(Ψ) =
1

2

∫
Ψ ∗QBΨ +

1

3

∫
Ψ ∗ Ψ ∗ Ψ , (1.2)

and the quantities discovered independently by Hashimoto and Itzhaki [26] and Gaiotto,

Rastelli, Sen, and Zwiebach [27], which take the form,1

W (Ψ,V) = 〈I|V(i)|Ψ〉 , (1.3)

where I is the identity string field, and V = cc̄Om is an on-shell closed-string vertex

operator inserted at the midpoint of the string (which is at the point z = i in the standard

UHP coordinates).

While the classical action has a straightforward interpretation, it is less clear what

the invariants (1.3) compute. In fact, since W (Ψ,V) involves the identity field, one might

worry that it would be singular, but, as we’ll see in explicit computations, it is well-defined

for the known solutions.

Since W (Ψ,V) is gauge-invariant, it should correspond to some definite quantity in

the CFT associated with Ψ. In this paper we motivate the following proposal:

Let the string field theory of interest be defined around a boundary CFT0. Let Ψ be a

string-field associated to the boundary CFTΨ. Then

W (Ψ,V) = Adisk
Ψ (V) −Adisk

0 (V) , (1.4)

where Adisk
Φ (V) is the disk amplitude with one closed string vertex operator V and boundary

conditions given by CFTΦ.

As we will show, this relationship can be derived from the BRST invariance of the

closed string two-point function. This derivation is very delicate both in its use of BRST

invariance and its implicit reliance on certain assumptions about the nature of the string

fields used in the computation of the invariants. As such, our derivation is non-rigorous,

and we consider the fact that (1.4) holds in explicit examples as important evidence that

it is correct.

The relation (1.4) can be viewed in two ways: First, given a Ψ, we may compute the

left hand side for all possible V to determine the complete physical part of the boundary

state of CFTΨ. Second, given a boundary state of some boundary CFT for which we

1These invariants were first introduced in a different context by Shapiro and Thorn in [28, 29].
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don’t know the associated Ψ, we can use (1.4) to find a number of linear constraints on

Ψ. These may aid in the search for new solutions to the string field theory equations of

motion, though it does not seem that they are enough information to derive a string field

theory solution given a CFT since the on-shell condition on the closed string field puts

tight restrictions on its form in most cases.

Having given an interpretation for W (Ψ,V), it is natural to extend the construction

to the Berkovits open superstring field theory [30 – 32]. The string field in this case has a

different gauge invariance,

eΦ → eQBΛeΦeη0Λ′

(1.5)

where Λ and Λ′ are independent gauge parameters and η0 is the zero mode of η in the η,

ξ, φ superconformal ghost system. Nonetheless, a set of invariants, which are very similar

to the bosonic invariants was written down in [33].

We use a slightly different, but equivalent, form of these invariants: As has held true

in a number of examples [16, 15, 17, 22], the analogue of the bosonic string field Ψ in the

superstring is e−ΦQBe
Φ. This leads to a set of invariants in superstring field theory,

Ŵ (Φ,V) = 〈I|V(i)|e−ΦQBe
Φ〉 , (1.6)

where V is a weight zero primary field inserted at the midpoint which satisfies

QBη0V = 0 . (1.7)

The operator V lives in the big Hilbert space which includes the zero-mode of ξ and should

be thought of as (ξ + ξ̃)O where O is in the small Hilbert space.

We will see in an example that this quantity appears to compute the change in the

closed string one-point function, just as is it does in the bosonic case. However, because

of the complexity of perturbation theory in the Berkovits superstring, we do not have a

general derivation of this result.

The organization of this paper is as follows: In section 2, we review the construction

of the invariants W (Ψ,V), the arctan(z) coordinate system and the closed string tadpole.

In section 3, we compute W (Ψ,V) for marginal deformations and the tachyon vacuum.

In section 4, we show how the relation between the closed string one-point function and

W (Ψ,V) can be derived from BRST invariance of the closed string two-point function.

Finally, in section 5 we discuss an extension to the Berkovits superstring field theory.

2. Review

In this section we review the invariants W (Ψ,V) introduced in [26, 27] and discuss how

they are computed in the arctan(z) coordinates. We then discuss some aspects of the closed

string tadpole diagram which will be useful later.

2.1 The invariants W (Ψ,V)

Consider a string field Ψ, defined as the state |Ψ〉 = OΨ(0)|0〉, where OΨ is a ghost number

1 boundary operator and |0〉 is the SL2(R) vacuum. In the upper half plane, we may think

of the state |Ψ〉 as living on the unit semi-circle as in figure 1a.

– 3 –
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OΨ w ◦ OΨ

V(i)
i

LR

LR

a) b)

Figure 1: The construction of the invariants W (Ψ,V) is shown. In a), we begin with a state Ψ

formed by inserting the vertex operator OΨ into the UHP at the origin. The wavefunction for the

state Ψ is to be thought of as living on the unit semi-circle. The left and right halves of the string

as seen from infinity are labeled L and R. The string midpoint is at z = i. To contract the state

with the identity, glue the semicircles L and R together and map the resulting geometry to the

plane using z → w(z) as shown in b). To saturate the ghostnumber, insert a closed string field V
at the midpoint, w(i) = i.

To define the invariants W (Ψ,V), first map the upper half disk to the entire upper

half plane using the map,

w(z) =
2z

1 − z2
. (2.1)

This is shown in figure 1b. Next, to saturate the ghost number on the UHP, add a ghost-

number 2 vertex operator V(i) at the midpoint. Finally, compute the correlator,

W (Ψ,V) = 〈V(i)w ◦ OΨ〉UHP . (2.2)

The key property of W (Ψ,V) is that if V is a weight (0, 0) primary, satisfying {QB ,V} = 0,

then W is invariant under the open string field theory gauge group,

W (Ψ +QBΛ + [Ψ,Λ],V) = W (Ψ,V) . (2.3)

Since W (Ψ,V) is linear in Ψ, this follows from the identities,

W (QBΛ,V) = 0 , (2.4)

W ([Ψ,Λ],V) = 0 . (2.5)

To show (2.4), suppose |Λ〉 = OΛ(0)|0〉. Then,

W (QBΛ,V) = 〈V(i)w ◦ {QB ,OΛ}〉UHP = −〈[QB,V(i)]w ◦ OΛ〉UHP = 0 , (2.6)

where the second equality uses the BRST invariance of the boundary conditions on the

UHP, 〈{QB , . . .}〉 = 0.

The second identity (2.5) follows from essentially the same arguments that show

∫
Ψ1 ∗ Ψ2 =

∫
Ψ2 ∗ Ψ1 . (2.7)
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Assuming that V is a weight (0,0) primary,

W (Ψ ∗ Λ,V) = 〈V(i)OΨ∗Λ〉UHP = 〈V(i) f1 ◦ OΨ f2 ◦ OΛ〉UHP , (2.8)

W (Λ ∗ Ψ,V) = 〈V(i)OΛ∗Ψ〉UHP = 〈V(i) f1 ◦ OΛ f2 ◦ OΨ〉UHP , (2.9)

where

f1(z) =
1 + z

1 − z
, f2(z) = −1 − z

1 + z
. (2.10)

Noting that f1 = I ◦ f2, where I(z) = −1/z is the BPZ dual, it follows that (2.8) and (2.9)

are related by an SL2(Z) transformation and, hence, equal. This implies

W (Ψ ∗ Λ − Λ ∗ Ψ,V) = 0 . (2.11)

2.2 The arctan(z) frame

It will be useful in the discussion to follow to know how to compute W (Ψ,V) when the

state Ψ is given in the arctan(z) coordinate system that has played a prominent role in

recent developments. Define,

z̃ = f(z) = 2
π arctan(z) , (2.12)

which takes the upper half plane to a semi-infinite cylinder of circumference 2. A correlator

on a semi-infinite cylinder of circumference n is defined by first rescaling z̃ → 2
n z̃ to get

back to a cylinder of width 2 and then mapping z̃ → f−1(z̃) to get back to the upper

half plane. We will often follow the notation of [14] and consider the fundamental region

of the cylinder to be the region −1
2 < ℜ(z̃) < n − 1

2 . This unusual choice happens to be

convenient for the form of some string field solutions.

A prototypical state |Σ〉 defined in cylinder coordinates is shown pictorially in 2a.

Algebraically, we define |Σ〉 through its overlap with an arbitrary test state 〈φ|,

〈φ|Σ〉 = 〈f ◦ φ(0) O(z̃1) . . .O(z̃n)〉Cn (2.13)

where the O’s are some local operators and the subscript Cn indicates that the correlator

is to be evaluated on a cylinder of circumference n. In order for this to be a non-singular

definition, we must require that none of the z̃i are contained in the image of the unit half-

disk under the map f(z). This region is given by −1
2 ≤ ℜ(z̃) ≤ 1

2 (and its images under

z̃ → z̃ + n).

Given a state |Σ〉 defined in this way, we would like to compute W (Σ,V). The first

step is to glue the left and right halves of Σ together. In the z̃ coordinates, the left and

right halves of the string live at ℜ(z̃) = n + 1
2 and ℜ(z̃) = 1

2 respectively as shown in the

figure. To glue them together, we remove the coordinate patch −1
2 < ℜ(z̃) < 1

2 , leaving

us with a strip of worldsheet of width n− 1 and then glue the two sides of the worldsheet

together, giving us back a cylinder of circumference n − 1. This is shown in figure 2b.

Finally, the operator V should be inserted at i∞, which is the string midpoint in the z̃

coordinates. In total,

W (Σ,V) = 〈V(i∞)O(z̃1) . . .O(z̃n)〉Cn−1 . (2.14)
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f ◦ φ

−1
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1
2 z1 z2 · · · zn
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n− 1
2

1
2 z1 z2 · · · zn

O O O

n− 1
2

a) b)

R L

Figure 2: In a) a typical state |Σ〉 is shown in cylinder coordinates. The shaded region represents

the coordinate patch, or, in other words, the image of the unit half disk under f(z). The left and

right halves of the state |Σ〉 are labeled L and R. In b) W (Σ,V) is shown. This is obtained by

removing the coordinate patch and gluing the lines labeled by L and R together. As a final step

the operator V should be inserted at i∞.

2.3 The closed string one-point function

Since we wish to relate W (Ψ,V) to the tree-level closed string one-point function, it is

useful to review how this diagram is computed. The closed-string one-point function is the

amplitude with one vertex operator V inserted on the disk. Since there are 3 CKVs on the

disk, we may fix the position of the one vertex operator to the center of the disk, z = 0.

Hence, V should be a fixed vertex operator of the form cc̃Om where Omatter is a weight

(1, 1) matter operator. Note, however, that

〈V(0)〉disk = 0 , (2.15)

since, to get a non-vanishing answer, we need soak up three ghost zero-modes and we have

only soaked up two. The problem is that fixing the position of V only removes two out of

the three CKV’s and the third, which generates rotations of the disk, has an associated

ghost-zeromode. Typically, if we have CKV’s left over, a diagram will vanish because the

volume of the associated group of symmetries is infinite. In this case, the volume of the

group of rotations of the disk is just 2π so the amplitude is finite.

To soak up the remaining zero-mode, we add the ghost-measure corresponding to fixing

one of the points z = eiθ on the boundary of the disk. Given an infinitesimal coordinate

shift δσa, its component along the boundary is given by

sin θ δσ1 − cos θ δσ2 = −ℑ(e−iθδσz) , (2.16)

at the point z = eiθ. To get the correct measure, we should then add2

−ℑ(e−iθc(eiθ)) = ie−iθc(eiθ) (2.17)

2We are not attempting to determine the overall sign of the ghost measure. It has been picked to

give (1.4) rather than Adisk
0 (V) −Adisk

Ψ (V).
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to ghost path integral. The complete one-point function is given by

Adisk(V) = −e
−iθ

2πi
〈V(0) c(eiθ)〉disk . (2.18)

Note that we have included an extra factor of (2π)−1 to account for the volume of the CKV

group. One can check that (2.18) is independent of θ as it should be. In general, we will

pick θ = 0.

3. Computation of W (Ψ, V) for known solutions

In this section, the invariants W (Ψ,V) are computed for various known solutions. In each

case, the result is found to be consistent with the change in the one-point function of the

closed string under the shift from the original boundary conditions to the new boundary

conditions associated with the string field solution.

3.1 Invariants of marginal deformations with trivial OPEs

There are currently two (presumably) gauge-equivalent solutions to the OSFT equations of

motion that describe marginal deformations with trivial OPE. The first [13, 14], which is in

Schnabl-gauge [9], turns out to be impractical for computing W (Ψ,V). The second state,

discovered by Fuchs, Kroyter and Potting [18] and Kiermaier and Okawa [21], appears to

be more closely related to the boundary conformal field theory and is better suited for

our computation. Their solution also has a natural extension to the non-trivial OPE case,

which we will take up in the next subsection.

The complete solution takes the form [21],

ΨKO =
1√
U

(ΨL +QB)
√
U , (3.1)

where ΨL is a state to be introduced shortly and U is a string field whose form we will

not need. The state (3.1) appears to be a gauge-transformation of the state ΨL; however,

neither ΨL nor U are real string fields so (3.1) is not a proper gauge transformation.

Nevertheless, since, W (Ψ,V) has no knowledge of the reality condition, we can work with

the simpler state ΨL.

The state ΨL is given by,3

ΨL = −
∞∑

n=1

(−λ)n Ψ
(n)
L , (3.2)

where, following [21], we define the states Ψ(n) on a cylinder of circumference n+ 1,

〈φ|Ψ(n)
L 〉 =

〈
f ◦ φ(0)cJ(1)

∫ 2

1
dt1

∫ 3

t1

dt2

∫ 4

t2

dt3 . . .

∫ n

tn−2

J(t1)J(t2)J(t3) . . . J(tn−1)

〉

Cn+1

.

(3.3)

3In [21], this would be written
P

∞

n=1 λn Ψ
(n)
L as they pick the opposite convention for the left and right

halves of the string wave function. This affects the overall sign of the invariant as well as the sign of the

deformation.
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As defined in (2.12), the map f is given by f(z) = 2
π arctan(z). The field J is assumed to

be a weight 1 primary boundary matter operator with trivial OPE: J(z)J(0) ∼ O(1).

To compute W (Ψ(n),V), remove the coordinate patch −1/2 < ℜ(z̃) < 1/2 and re-glue

to form a cylinder of width n. Then insert V(i∞):

W (Ψ(n),V) =
〈
V(i∞)cJ(0)

∫ 1

0
dt1

∫ 2

t1

dt2

∫ 3

t2

dt3 . . .

∫ n−1

tn−2

dtn−1 J(t1)J(t2)J(t3) . . . J(tn−1)

〉

Cn

. (3.4)

Mapping this geometry to the disk using

g(z̃) = e2πiz̃/n , (3.5)

yields4

−i
〈
V(0)cJ(1)

∫ ω

0
dt1

∫ 2ω

t1

dt2 . . .

∫ (n−1)ω

tn−2

dtn−1 J(eit1)J(eit2) . . . J(eitn−1)

〉

disk

, (3.6)

where ω = 2π/n.

Remarkably, as we will now demonstrate, this complicated integral is equal to the

simpler integral,

− i

2πn!

〈
V(0) c(1)

∫ 2π

0
dt1

∫ 2π

0
dt2 . . .

∫ 2π

0
dtn J(eit1)J(eit2) . . . J(eitn)

〉m

disk

. (3.7)

Notice that the difference between the two integration regions is that in (3.6) we have the

constraints that tk ≤ ωk. These inequalities are explained by the following lemma:

Lemma. Given n points on the unit circle, we may always label them in counter clockwise

order, zi = eiθi , i ∈ {1, . . . , n} with increasing θi such that

θj − θ1 ≤ 2π
n (j − 1) . (3.8)

Proof. We use proof by contradiction. Begin by extending the definition of θi to include

i ∈ Z, by defining θi+n = θi + 2π. Assuming the lemma is false, we have that for every θi,

there exists a θj with j > i such that

θj − θi >
2π
n (j − i) . (3.9)

Hence, there exists a sequence {θim} such that

θim − θim−1 >
2π
n (im − im−1) , (3.10)

from which it follows that

θim − θip >
2π
n (im − ip) . (3.11)

4Note that under z → χ(z), a weight h boundary operator transforms as O(z) → |∂χ

∂z
|hO(χ(z)).
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Since there are only a finite number of points on the circle, there must be two points in

the sequence such that ia − ib = kn for some k ∈ Z. Since these represent the same point

on the circle, we learn that

θia − θib = 2πk , (3.12)

which is in contradiction with (3.11) for m = a and p = b. �

The choice of z1 is generically unique. If there are two possible points which may be

chosen as the first point, it follows from (3.8) that they must be separated by an integer

multiple of 2π/n.

Now, consider the integral (3.7). Ignoring special points in the integration region

(which are measure zero), we can divide the integral up into n integrals in which one of

the n points is picked to be z1 and the rest of the points satisfy (3.8). We can fix the

order of the remaining points at the expense of introducing a factor of (n−1)! and we may

fix z1 = 1 by a rotation if we multiply the integral by 2π (which cancels the 2π in (3.7)).

Finally, all of these n integrals are identical giving a factor of n which combines with the

(n − 1)! to cancel the n! in (3.7) giving (3.6).

Summing up the terms in W (Ψ,V) using (3.7) gives

W (Ψ,V) = − 1

2πi

〈
V(0) c(1)

[
exp

(
−
∫ 2π

0
dt λJ(eit)

)
− 1

]〉

disk

, (3.13)

which, using (2.18), is equivalent to

W (Ψ,V) = Adisk
Ψ (V) −Adisk

0 (V) . (3.14)

As defined in the introduction, Adisk
Ψ (V) is the one-point function with boundary conditions

deformed by λJ .

3.2 Invariants of marginal deformations with non-trivial OPE

The preceding argument can be extended to the case with non-trivial OPE in the case

when the OPE takes the form,

J(z)J(w) ∼ 1

(z − w)2
. (3.15)

The main change to the previous discussion is that the operators J must be renormalized.

There are, however, some subtleties which we dwell on here that more general readers may

not be interested in and we encourage them to skip to the next subsection.

In the non-trivial OPE case, the solution is again given in [18, 21]. We follow the

notation of Kiermaier-Okawa [21]. Before we can introduce their state, we need to describe

their renormalization scheme. This requires a number of definitions which we now repeat:

Let the Green’s function on the cylinder be denoted

G(y1, y2) = 〈J(y1)J(y2)〉 , (3.16)

and, following [21], define the normal ordered product,

:
n∏

i=1

J(yi) := e
− 1

2

R

dx1 dx2 G(x1,x2)
δ

δJ(x1)
δ

δJ(x2)

n∏

i=1

J(yi) . (3.17)
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The object
∫ b
a dy J(y) appears often enough that it is useful to define [21]

J(a, b) ≡
∫ b

a
dy J(y) . (3.18)

To write down the marginal solution, we need to specify two renormalized operators

[
e−λ J(a,b)

]

r
,

[
J(a)e−λJ(a,b)

]

r
. (3.19)

To do this, we need the renormalized correlators [21],

〈J(a, b)2〉r ≡ 2 lim
ǫ→0

(∫ b−ǫ

a
dy1

∫ b

t1+ǫ
dy2G(y1, y2) −

b− ǫ− a

ǫ
− log ǫ

)
, (3.20)

〈J(a)J(a, b)〉r ≡ lim
ǫ→0

(∫ b

a+ǫ
dy G(a, y) − 1

ǫ

)
. (3.21)

The full renormalized operators are given by [21]

[
e−λJ(a,b)

]

r
≡ e

1
2
λ2〈J(a,b)2〉r : e−λJ(a,b) : , (3.22)

[
J(a)e−λJ(a,b)

]

r
≡ e

1
2
λ2〈J(a,b)2〉r : (J(a) − λ〈J(a)J(a, b)〉r)e−λJ(a,b) : . (3.23)

Note that these can be rewritten as

[
eλJ(a,b)

]

r
= lim

ǫ→0
Rǫ exp

(
−λ2(log ǫ− 1) +

∫ b

a
dy

(
− λJ(y) − 1

ǫ
λ2

))
,

(3.24)
[
J(a)eλJ(a,b)

]

r
= lim

ǫ→0
Rǫ(J(a) +

1

ǫ
λ) exp

(
−λ2(log ǫ− 1) +

∫ b

a
dy

(
− λJ(y) − 1

ǫ
λ2

))
,

(3.25)

where the operator Rǫ removes all terms in which two J ’s are within ǫ of each other. A

few comments may help clarify these choices. Essentially, we are renormalizing −λJ →
−λJ − 1

ǫλ
2. However, note the first term in the exponential, χ = −λ2(log ǫ − 1), which

comes from log ǫ and finite piece subtracted off in (3.20).

The eχ prefactor is unexpected from the point of view of the renormalization of the

boundary operator J since only the counterterm 1
ǫλ

2 is needed in boundary perturbation

theory [34]. Fortunately, all dependence on χ will drop out when the full solution is

assembled.

We define the powers J (n)(a, b) through the expansions (absorbing, as in [21], the

factors of n!),

[e−λJ(a,b)]r =

∞∑

n=0

(−λ)n[J (n)(a, b)]r , [J(a)e−λJ(a,b)]r =

∞∑

n=0

(−λ)n[J(a)J (n)(a, b)]r .

(3.26)
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Define the states5

Uα ≡
∞∑

n=0

(−λ)nU (n)
α , Aα =

∞∑

n=1

(−λ)nA(n)
α , Ãα =

∞∑

n=2

(−λ)nÃ(n)
α , (3.27)

where

〈φ|U (n)
α 〉 = 〈f ◦ φ(0) [J (n)(1, n + α)]r〉Cn+α+1 , (3.28)

〈φ|A(n)
α 〉 = 〈f ◦ φ(0) [cJ(1)J (n−1)(1, n + α)]r〉Cn+α+1 , (3.29)

〈φ|Ã(n)
α 〉 =

1

2
〈f ◦ φ(0) ∂c [J (n−2)(1, n + α)]r〉Cn+α+1 . (3.30)

The complete marginal solution is given by6

Ψ = −(A0 + Ã0)U
−1
0 . (3.31)

Conveniently, if one computes the contribution of Ã0U
−1
0 to W (Ψ,V), it is proportional to

the ghost correlator,

〈cc̃(i)∂c(0)〉UHP = 0 . (3.32)

Hence, we can ignore Ã in our discussion and we need only compute

W (Ψ,V) = W (−A0U
−1
0 ,V) . (3.33)

We now want to show that A0U
−1
0 contains only subtractions of inverse powers of ǫ

and that the contribution from χ = −λ2(log ǫ− 1) does not enter. To do this, define a new

renormalization [ ]′r in which the log ǫ and finite piece in (3.20) are not subtracted,

[
e−λJ(a,b)

]′
r

= Rǫ exp

(∫ b

a
dy

(
− λJ(y) − 1

ǫ
λ2

))
, (3.34)

[
J(a)e−λJ(a,b)

]′
r

= Rǫ

(
J(a) +

1

ǫ
λ

)
exp

(∫ b

a
dy

(
− λJ(y) − 1

ǫ
λ2

))
. (3.35)

Note that we can no longer take ǫ → 0 since these operators are not finite in that limit.

Next, define U ′
α and A′

α to be the same as Uα and Aα except using [ ]′r instead of [ ]r. We

can express one in terms of the other as follows:

U =

∞∑

n=0

χnU ′
2n , A0 =

∞∑

n=0

χnA′
2n . (3.36)

We then have

A0U
−1
0 =

∞∑

n=0

χnA′
2n

(
∞∑

m=0

χnU ′
2m

)−1

(3.37)

=

∞∑

n=0

∞∑

N=0

(−1)N




N∏

i=1

∞∑

ki=1



χn+k1+...+kNA′
2n(U ′

0)
−1

N∏

i=1

U ′
2ki

(U ′
0)

−1 . (3.38)

5To compare with [21], note that AL = A0 + Ã0.
6As in the trivial OPE case, this solution does not satisfy the reality condition. However, the real

solution is once again gauge equivalent if we allow complex gauge transformations.
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Using the identity [21],

A′
α(U ′

0)
−1U ′

β = A′
α+β , (3.39)

We find
∞∑

n=0

∞∑

N=0

(−1)N




N∏

i=1

∞∑

ki=1



χn+k1+...+kNA′
2n+2k1+...2kN

(U ′
0)

−1 . (3.40)

Note that the coefficient of χKA′
2K is

∞∑

n=0

∞∑

N=0

(−1)N




N∏

i=1

∞∑

ki=1



 δK,n+k1+...+kN
. (3.41)

Replacing the Kronicker delta with a Dirac delta-function, we can write this as

∞∑

n=0

∞∑

N=0

(−1)N




N∏

i=1

∞∑

ki=1



 δ(K − (n+ k1 + . . .+ kN ))

=

∫ ∞

−∞
dy

∞∑

n=0

∞∑

N=0

(−1)N




N∏

i=1

∞∑

ki=1



 eiy(K−(n+k1+...+kN )) . (3.42)

Performing the sums over n and ki gives

∫ ∞

−∞
dy

∞∑

n=0

∞∑

N=0

(−1)N eiy(1+K)

(
1

eiy − 1

)N+1

=

∫ ∞

−∞
dy eiyK = δ(K) , (3.43)

from which we learn (dividing by δ(0) if you will), that (3.41) is just δK,0. We have found

that

A0U
−1
0 = A′

0(U
′
0)

−1 , (3.44)

so that all χ dependence has dropped out as promised. Note that, since the left hand side

is finite, the right hand side must be finite. This useful fact, which can be verified at low

orders, tells us that no log ǫ terms ever arise in the full form of Ψ. This also implies that

as far as Ψ is concerned, we can use [ ]′r, which is the expected renormalization of J . We

can now write

〈φ|A′
0(U

′
0)

−1〉

=

∞∑

n=1

(−λ)n

〈
f ◦ φ

∫ 2

1
dy1

∫ 2

y1

dy1 . . .

∫ n

yn−2

dyn−1 [cJ(0)J(y1)J(y2) . . . J(yn−1)]
′
r

〉

Cn+1

.

(3.45)

Inserting this state into W , the argument proceeds in the same manner as in the trivial

OPE case. We find, simply

W (Ψ,V) = − 1

2πi

〈
V(0) c(1)

[
exp

(
−
∫ 2π

0
dt λJ(eit)

)
− 1

]′

r

〉

disk

, (3.46)
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which, using (2.18), gives

W (Ψ,V) = Adisk
Ψ (V) −Adisk

0 (V) . (3.47)

The only new feature here is that the boundary deformation generated by J has been

renormalized using the appropriate counter term as discussed in [34].

3.3 Invariants of the tachyon vacuum

We can also compute the invariants for the tachyon vacuum solution. The tachyon vacuum

state is given by [9]

lim
N→∞

(
ψN −

N∑

n=0

∂nψn

)
, (3.48)

where

〈φ|ψk〉 =

〈
[f ◦ φ](0) c(−1)

(∫ i∞

−i∞

dz̃

2πi
b(z̃)

)
c(1)

〉

Cn+2

. (3.49)

The invariant W (ψn, cc̄Om) is given by

〈
c(i∞)c(−i∞)Om(i∞) c(n/2)

(∫ i∞

−i∞

dz̃

2πi
b(z̃)

)
c(−n/2)

〉

Cn+1

. (3.50)

Applying

g(z̃) = tan

(
πz̃

n+ 1

)
, (3.51)

we get

n+ 1

π

1

(1 + x2)2

〈
c(i)c(−i)Om(i) c(x)

(∫ i∞

−i∞

dz

2πi
(1 + z2)b(z)

)
c(−x)

〉

UHP

, (3.52)

where x = tan(π
2

n
n+1). Evaluating the ghost correlator, this reduces to

W (ψn, cc̃Om) =
2i

π
〈Om(i)〉mUHP . (3.53)

Remarkably, this is independent of n. It follows that

W (Ψ,Om) = lim
N→∞

W (ψN −
∑

n

∂nψn,Om) = lim
N→∞

W (ψN ,Om) , (3.54)

which we can write as

2i

π
〈Om(i)〉mUHP =

1

π
〈cc̃O(i)c(0)〉UHP =

1

2πi
〈V(0)c(1)〉disk = −Adisk

0 (V) . (3.55)

It might seem surprising that the terms ∂nψn would make no contribution. The reason for

this simplification is that the sum, −∑λn∂nψn is a pure gauge state for λ < 1. Since W

is gauge invariant, it follows that W (∂nψn,Om) must vanish for every n.

The result (3.55) should be interpreted as

W (Ψ,Om) = Adisk
Ψ (V) −Adisk

0 (V) , (3.56)

where Adisk
Ψ (V) = 0 since there is no source for closed strings in the tachyon vacuum.
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V1 V2

V1 V2

T
T

b π

a) b)

Figure 3: The closed string two-point function in the string field theory conformal frame. There

is one modulus, T , which is integrated from 0 to ∞. There is a single ghost insertion given by

an integral of the b-ghost over the red line. In a), the geometry is shown as a flat strip with two

identifications given by the hatches on the right and left. In b), the same geometry is shown in

after the identifications are performed. Note the conical singularities at the closed string insertions.

For consistency, V1,2 must be weight (0, 0).

4. Derivation of the invariants from BRST invariance

Having seen in two examples that W (Ψ,V) computes the closed string tadpole, it is desir-

able to find a general derivation of this result.

Naively, one should begin with the usual method for finding a string field theory

diagram for a given amplitude: Open string field theory diagrams are given by picking a

minimal metric on the worldsheet subject to the condition that any non-contractible Jordan

open curves have length at least π [5]. For a disk with one closed string insertion and

no open string insertions, however, there are no non-contractible curves and the minimal

metric surface has zero size. Furthermore, including a background string field, representing

a change in the disk boundary conditions, it is not clear how to find the appropriate minimal

metric.

Although this direct approach fails, one can still try to use an argument from BRST

invariance: Consider a disk with two closed string insertions and take the limit as the two

insertions become close together. In this limit, the diagram is conformally equivalent to a

diagram in which the two closed string insertions are connected to the boundary of the disk

by a long tube. If we pick the momenta of the two closed string insertions such that the

intermediate closed string state is on-shell, this long tube will lead to a divergence when

we integrate over its length. Conveniently, this divergence gives rise to a BRST anomaly7

which is proportional to the closed string tadpole diagram.

The closed string two-point function on the disk in the conformal frame appropriate to

string field theory is shown in figure 3 [28, 29, 39, 5, 26, 40, 41]. The amplitude is given by8

A(V1,V2) = 〈I|V1(i) b0

∫ ∞

ǫ/2
dT e−L0TV2(i)|I〉 , (4.1)

7Note that the diagram is neither divergent, nor anomalous for generic momenta [35, 36]. See [37, 38]

for a general discussion of how tadpoles can arise as surface terms in moduli space.
8Computations of the closed string two-point function in open string field theory include [40, 41].
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O

V2

π

ǫ

ǫ〈Ω|

a)

b)

Figure 4: The surface term from replacing V2 = [QB,O]. In a), the amplitude (4.3) is shown. In

b) the two closed string insertions are replaced with their OPE.

where ǫ is a UV cutoff on the worldsheet, but an IR cutoff in spacetime. That this diagram

is given by a propagator sandwiched between two states will be very convenient when we

repeat this computation with a background open string field.

To see the origin of the BRST anomaly, consider the case when V1 = QBO. We then

find,

〈I|[QB,O(i)] b0

∫ ∞

ǫ/2
dT e−L0TV2(i)|I〉

= −〈I|O(i) {QB , b0

∫ ∞

ǫ/2
dT e−L0T }V2(i)|I〉 = −〈I|O(i) e−L0T

∣∣∣∣
∞

T=ǫ/2

V2(i)|I〉 , (4.2)

where we have used the properties {QB , b0} = L0 and the on-shell condition {QB,V2} = 0

as well as QB|I〉 = 0. The contributions at T → ∞ are not relevant for the current

discussion. Dropping them gives

〈I|O(i) e−L0ǫ/2V2(i)|I〉 . (4.3)

This amplitude is shown in figure 4a. Since ǫ is assumed to be very small, we may replace

the two insertions of O and V2 with their OPE, giving the geometry in figure 4b. The

geometry is considerably simplified. We now have a closed string state, |Ω〉 coming in

from in infinity and ending on a boundary. Note that the OPE could have singular terms

since we are in a theory with tachyons. Such terms correspond to propagation of the

tachyon over long distances and should be removed either by analytic continuation or

explicit subtraction. In the absence of singularities, it follows that (L0 + L̃0)|Ω〉 = 0. Note

that if the OPE contains no finite piece, the surface term vanishes. This is why O and V2

must be tuned so that the intermediate closed string state is on-shell.

Since Ω is overlapped with the L0 + L̃0 = 0 part of the boundary state, which is in

the cohomology of QB , we may drop the parts of Ω which are not physical; Hence, we

may take9 {QB,Ω} = 0. This is the closed string one-point function which we wished to

9We are assuming that it is possible to divide the closed string fock space into two orthogonal pieces

HCFT = Hcoh ⊕Hrest with the weight zero piece of the boundary state in the QB-cohomology, Hcoh. Note

that we have not shown that an arbitrary element of Hcoh can be created from the OPE of the states O

and V2, which would be required for a complete derivation.
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a) b)

T1 T2 T3 T4 T5

Figure 5: The propagator in the presence of a open string field vev shown with four insertions of

Ψcl. In a), the insertions of Ψcl are represented by cuts in the worldsheet. As shown in b), to get

the full worldsheet geometry, one must glue an infinitely long strip into each cut. Each insertion of

Ψcl introduces one extra moduli in addition to the modulus of the overall length of the propagator.

With each modulus, one must add an integral of b — as shown in red in a) – in order to get the

right measure on moduli space.

compute. The point of this exercise is that when we turn on an open string vev, we can

repeat the same computation to find the one-point function in the presence of an open

string field background.

When we shift the vacuum Ψ → Ψ + Ψcl, the only change in the open string field

theory action is a shift in the BRST operator,

QB → QB + [Ψcl, ] . (4.4)

This introduces a term, ∫
Ψ ∗ Ψ ∗ Ψcl , (4.5)

in the action which shifts the propagator. The new propagator is given by summing over

all the ways of inserting Ψcl into the old propagator together with the appropriate ghost

insertions. This is illustrated in figure 5.

Algebraically, the propagator between states |A〉 and |B〉 can be written as follows.

Define the adjoint action of Ψcl by

adΨcl
Φ = Ψcl ∗ Φ − (−1)gh(Φ)Φ ∗ Ψcl , (4.6)

and

D =

∫ ∞

0
dT e−TL0 . (4.7)

Then the full propagator is given by

∞∑

n=0

〈A|b0D (adΨcl
b0D)n |B〉 . (4.8)
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O

O

V2

V2

T1 T2 T3 T4 T5

T1 T2 T3 T4 T5

O V2

〈Ω|

π/2

a)

b)

c) d)

Figure 6: Various representations of the surface term are shown for the case of four insertions. In

a), a representation of (4.12) is given. It is assumed that
∑
Ti = ǫ/2. In this form the ǫ→ 0 limit is

difficult because the operators O and V2 collide with the ends of the cuts and the b-ghost insertions.

In b) a reparametrization for the classical solution Ψcl is used so that the cuts do no reach the

midpoint of the string. Performing the identifications in b) produces the diagram c) which now has

a long tube separating the operators O and V2 from the cuts. As shown in d), when ǫ is small we

can replace the top of the diagram with a single closed string state, |Ω〉.

Given the propagator in the presence of Ψcl one can compute the modified closed-string

two point function by replacing the old propagator in (4.1) with the new one,

AΨ(V1,V2) =
∞∑

n=0

〈I| V1(i) b0D (adΨcl
b0D)n V2(i)|I〉 (4.9)

To extract the one-point function, again replace V1 = {QB ,O}. After some algebra and

using the equations of motion for Ψcl one finds (see appendix A for details):

−
∫ ∞

ǫ/2
dT

∂

∂T

∞∑

n=0

(
n∏

i=0

∫ ∞

0
dTn

)
δ(T −

n∑

i=0

Ti)〈I|O(i) DT0

(
n∏

i=1

{b0, adΨcl
}DTi

)
V2(i)|I〉 ,

(4.10)

where

DTi
= b0e

−TiL0 . (4.11)

This leads to the surface term,

∞∑

n=0

(
n∏

i=0

∫ ∞

0
dTn

)
δ(ǫ/2 −

n∑

i=0

Ti)〈I|O(i) DT0

(
n∏

i=1

{b0, adΨcl
}DTi

)
V2(i)|I〉 . (4.12)

Geometrically, this amplitude is given by figure 6a. It is important to point out that that

the cutoff ǫ is not conformally/BRST invariant so the expression (4.12) is not invariant

under gauge transformations of Ψcl except in the limit ǫ→ 0.
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Unlike in the case without an open string background, it is not clear that, when ǫ is

very small in (4.12), one can replace O and V2 with their OPE. The problem is that the

two closed string operators are not separated from the rest of the geometry by a long tube.

Instead, the midpoints of the Ψcl insertions and integrals of the b-ghost all remain close to

the closed string insertions.

To fix this problem, one can perform a gauge transformation of Ψcl which reduces its

height. This reparametrizaion, which is discussed in appendix B, allows one to make a cut

in the propagator which is some height h < π/2 and insert strip representing Ψcl which has

been shrunk by a factor of 2h/π. Since, as mentioned above, the amplitude is not invariant

under gauge transformations for finite ǫ, this step may seem suspicious. However, as will be

seen in a moment, gauge invariance will be restored in the small ǫ limit and the dependence

on h will drop out.

The amplitude with the gauge transformed Ψcl’s is shown in figure 6b. Performing the

identifications leads to a geometry shown in figure 6c. As can be seen from the figure, there

is now a long tube separating the closed string insertions from the rest of the geometry so

one may replace them with their OPE as shown in figure 6d. One can then check that,

assuming we can drop the non-physical parts of Ω, so that QB |Ω〉 = 0, the gauge invariance

Ψcl → Ψcl +QBΛ + [Ψcl,Λ] is restored.10

By unitarity, the amplitude pictured in figure 6d should be the closed string one-point

function on a disk with boundary conditions CFTΨcl
. We may suppose, without loss of

generality, that

Ω = (∂c− ∂̄c̃)cc̃Om , (4.13)

where Om is a weight (1, 1) primary. Set cc̃Om = V. The vertex operator Ω is ghost

number 3. The extra ghostnumber corresponds to fixing the CKV corresponding to the

rotation of the cylinder. To write the amplitude in terms the standard ghostnumber 2

operator V, pull one of the b-ghost integrals off of the bottom of the cylinder and push it

up till it encircles the state |Ω〉. Next, let the b-ghost integral act on |Ω〉 giving

2π

ǫ
(b0 − b̃0)|Ω〉 =

2π

ǫ
|V〉 . (4.14)

The ǫ−1 can be used to fix the location of the cut whose b-ghost integral we removed since,

by rotational invariance, the integral over its position just gives a factor of ǫ.

At this point, the amplitude still bears little resemblance to the invariants W (Ψ,V).

However, it turns out that by simultaneously increasing the height h of the insertions and

rescaling the wedge width on which the state Ψcl is defined, the amplitude dramatically

simplifies. To see why, consider the state Ψcl to be defined in the arctan(z) coordinates.

To map Ψcl to the strip coordinates appropriate for gluing Ψcl to the cylinder, we should

10It is nice to have an independent check that this amplitude is the closed string one-point function. Here

is a sketch of an alternate argument: since gauge invariance is restored, we can reparametrize the width of

the state Ψcl to limit it to an identity state with a single operator cO inserted on the boundary. Using the

b-integrals to remove the c ghost, we are left with a disk with the boundary deformation exp(
R

O). As one

can check in simple cases, this typically generates the renormalized boundary deformation associated with

the state Ψcl so that the diagram reduces to Adisk
Ψ (V).
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f ◦ φ 1−1 f ◦ φ 1+ρ
2−1+ρ

2

a) b)

Figure 7: Reparametrization of the wedge width. In a), a standard state is given in the arctan(z)

coordinates. In b), the state is shrunk by a factor of ρ while the coordinate patch is left alone giving

a cylinder of width 1 + ρ.

use

ξ(z) =
2h

π
log

(
tan

(
πz̃

2

))
, (4.15)

where the factor of h accounts for the change in height of the insertion. Suppose that,

in addition to changing the height of the solution, we also reparametrize it by changing

its width. This can be accomplished by rescaling the state using z̃ → ρz̃ while leaving

the coordinate patch alone. This is the standard reparametrization of the wedge width

discussed, for example in [42 – 45].

In detail, suppose we take the original state to be defined on a cylinder of circumference

2 as shown in figure 7a. Shrinking the wedge width by taking z̃ → ρz̃ while leaving the

coordinate patch alone defines a new state Ψ′
cl which is shown in figure 7b. The full map

from the original state Ψcl to the coordinates we are using for gluing is then given by

ξ′(z) =
2h

π
log

[
tan

(
π

2

((
z̃ − 1

2

)
ρ+

1

2

))]
. (4.16)

The limit we are interested in is taking h → ∞ with ρ = 1/2h. Focusing on the region of

worldsheet near z̃ = 1/2 (to avoid the branchcut of the log), one can verify that

lim
h→∞

2h

π
log

[
tan

(
π

2

((
z̃ − 1

2

)
1

2h
+

1

2

))]
= z̃ − 1

2
, (4.17)

which is just a simple translation. In other words, in the limit h → ∞ ρ → 0, hρ = 1/2,

a state Ψcl as defined in the arctan(z) coordinates should be inserted into the cylinder

geometry by cutting a infinite vertical strip in the cylinder and gluing in Ψcl without any

conformal transformations. The general picture is shown in figure 8.11

In the resulting geometry, the integrals over the b-ghost just become the operator

B1 = b−1 + b1, which, in cylinder coordinates, is

arctan ◦B1 =

∮
dz̃

2πi
b(z̃) . (4.18)

11This representation of a string field theory amplitude is reminiscent of [46 – 48].
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Ψcl

T1

B1Ψcl

T2

B1Ψcl

T3

|V〉

∫ ∞

0
dTi δ

(
∑

i

Ti − ǫ

)

Figure 8: The resulting geometry for the case of three Ψcl insertions after flattening the insertions

of Ψcl using a double gauge transformation. The field Ψcl is now inserted into the geometry in the

arctan coordinates. The b-ghost integrals have become B1’s acting on all but one of the Ψcl’s.

The important point to note is that using the double gauge transformation, we have flat-

tened out the conical singularities that arose from inserting Ψcl into the cylinder geometry.

This allows one to act with B1 on Ψcl in the obvious way.

One might worry about two problems in this limit: First, although the curvature

singularities are disappearing as we increase the height and decrease wedge width, we are

nonetheless bringing a curvature singularity near the insertion of V. We believe that,

because V is a weight zero primary, there should be no divergences from this limit. Second,

increasing the height of the insertions pushes the contour integrals of b close to V. Here

again we believe there should be no singularity since the b-integral contours can be made

to go through V without any divergence as can be checked by mapping the geometry to a

disk. (Note that this would not have been true before we removed a b-integral from one of

the Ψcl insertions and let it act on the closed string state). We fully admit, however that

this double reparametrizaion is delicate and additional operators inside the state Ψcl could

also create potential divergences.

With these caveats in mind, consider taking the ǫ → 0 limit. First, note that the

worldsheet does not become singular anywhere in this limit since the Ψcl insertions can be

assumed to have a finite minimum thickness. Furthermore, there are no singularties when

Ψcl insertions become close as B1Ψcl∗Ψcl and Ψcl∗B1Ψcl are finite.12 However, the integra-

tion regions go to zero size in this limit, so each term with more than one Ψcl will vanish.

The only terms that remain, are the case with one Ψcl which we recognize as the

invariant W (Ψcl,V) and the case with no Ψcl’s which is just the one-point function with

Ψcl = 0. Hence, we have found

Adisk
Ψ (V) = Adisk

0 (V) +W (Ψ,V) , (4.19)

which reproduces (1.4).

12This is true at least for the known solutions. Since there is, at present, no general “regularity condition”

on the string field, we cannot say if this assumption is always true, even if it seems reasonable.
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5. Extension to Berkovits’ open superstring field theory

In this section, the extension to the Berkovits superstring field theory of the invariants

W (Ψ,V) is discussed. The invariants are computed for the case of marginal deformations

with trivial OPE, yielding a formula for the invariants in terms of the closed string one-point

function analogous to the bosonic case.

5.1 A gauge-invariant observable for the superstring

To extend to the superstring case, one needs an object which is invariant under the modified

gauge trasformation,

eΦ → eQBΛeΦeη0Λ′

, (5.1)

where Λ and Λ′ are two gauge parameters. Such an invariant was written down in [33].

Here we take a slightly different, but equivalent, approach.13

Define

Ω = e−ΦQBe
Φ. (5.2)

The field Ω transforms under (5.1) as

Ω → e−η0Λ′

(Ω +QB) eη0Λ′

. (5.3)

Notice that it is invariant under the transformations generated by Λ. Consider the object,

Ŵ (Φ,V) = 〈I|V(i)|Ω(Φ)〉 , (5.4)

where V is a weight (0, 0) primary. If V satisfied QBV = 0 then we would find that Ŵ = 0

since by (5.2) Ω is pure-gauge in the bosonic sense. We instead assume that

QB(η0 + η̃0)V = (η0 + η̃0)QBV = 0 , QBV 6= 0 . (5.5)

We can now check that (5.4) is invariant under (5.3). To see this, note that under the

gauge transformation (5.1),

Ŵ (Ω,V) → Ŵ (Ω,V) + Ŵ (e−η0Λ′

QBe
η0Λ′

,V) (5.6)

To show that the second term vanishes, define

Στ = e−τη0ΛQBe
τη0Λ , (5.7)

and consider

∂τ 〈I|V(i)|Στ 〉 = 〈I|V(i)| (QBη0Λ + [Στ , η0Λ])〉
= 〈I|V(i)|QBη0Λ〉 = 〈I|QB(η0 + η̃0)V(i)|Λ〉 = 0 . (5.8)

Since Σ0 = 0, it follows that

〈I|V(i)|Στ 〉 = 0 . (5.9)

Since Σ1 is the shift term in the gauge transformation (5.6), Ŵ (Φ,V) is gauge invariant

under (5.1).

13The invariant written down in [33] is simply 〈I|V(i)|Φ〉, with QBV = η0V = 0. Our invariant gives

〈I|V(i)|e−ΦQBeΦ〉 = 〈I|V(i)|QBΦ〉 = 〈I|{QB ,V(i)}|Φ〉, which, given our assumptions on V, reduces to the

same thing. The advantage of our form comes from the fact that many superstring solutions are found by

guessing Ω and then later finding Φ, which is often much more complicated.
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5.2 Computation of Ŵ for marginal solutions with trivial OPE

For marginal solutions with trivial OPE there are two known solutions for the Berkovits

superstring field theory. The first, found by Erler and Okawa [16, 15], is similar to the

Schnabl gauge solution in the bosonic theory and does not appear to be simple to work

with in this context. The second, found by Fuchs and Kroyter [19] and Kiermaier and

Okawa [22], which is analogous to their bosonic solutions, is, once again, more practical for

our considerations.

Following the notation of Kiermaier and Okawa [22], let V̂1/2 be a superconformal

primary with weight 1/2 and define V̂1 = G−1/2V̂1/2. Putting

OL = cV̂1 + ηeφV̂1/2 , (5.10)

an exact solution for ΨL = e−ΦQBe
Φ can be written as

ΨL = −
∞∑

n=1

(−λ)nΨ
(n)
L , (5.11)

where

〈φ|Ψ(n)
L 〉 =

〈
f ◦ φ(0)OL(1)

n∏

m=2

∫ m

tm−1

dtm V̂1(tm)

〉

Cn+1

, (5.12)

and t1 ≡ 1. One can now compute the invariant Ŵ (ΨL,V) in a similar fashion to the

bosonic case. For an NS-NS closed string field, we can represent V by

V = (ξ + ξ̃)cc̃e−φ−φ̃O( 1
2
, 1
2
) , (5.13)

where O( 1
2
, 1
2
) is a weight (1

2 ,
1
2) matter primary. On the disk

Ŵ (ΨL,V) = i

∞∑

n=1

(−λ)n

〈
V(0)OL(1)

n∏

m=2

∫ 2π m−1
n

θm−1

dθ V̂1(e
iθm)

〉

disk

. (5.14)

Examining the ξη ghost system reveals that we can replace OL with just its first term cV̂1

since the second term will make no contribution. The ηξ part of the amplitude becomes

simply 〈ξ(z) + ξ̃(z̄)〉 = 2, saturating the ξ zeromode. We thus find,

Ŵ (ΨL,V) = i

∞∑

n=1

(−λ)n

〈
V(0)cV̂1(1)

n∏

m=2

∫ 2π m−1
n

θm−1

dθ V̂1(e
iθm)

〉

disk

. (5.15)

This integral can be rewritten as

Ŵ (ΨL,V) = − 1

2πi

∞∑

n=1

〈
V(0) c(1)

{
exp

(
−
∫ 2π

0
dθ V̂1(e

iθ)

)
− 1

}〉

disk

. (5.16)

Hence, at least for this particular Φ, we find a similar result to the bosonic case,

Ŵ (Φ,V) = Adisk
Φ (V) −Adisk

0 (V) . (5.17)
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Inserting R-R-vertex operators on the disk is somewhat more subtle as one has to

pick the vertex operators in an asymmetric picture [49, 38, 50 – 52]. Moreover, to preserve

the arguments made above, it is necessary to pick a representation of the vertex operator

which has total φ-momentum −2 and doesn’t have any additional insertions of the ξ-ghost

zero-mode besides the factor of (ξ + ξ̃) that will be inserted by hand. The advantage of

such a representation is that it allows us to drop the second term in OL as we did in the

NS-NS case. Such representations exist, but contain an infinite number of terms [51]:

V = (ξ + ξ̃)

∞∑

M=0

V(M)(k, z, z̃) , (5.18)

where

V(M)(z, z̄) = aMΩABV
A
−1/2+M Ṽ

B
−3/2−M (z̄) , (5.19)

and the aM are constants, ΩAB is a spinor representation of the R-R-field of interest and

V
A
−1/2+M (z) = ∂M−1η(z) . . . η(z)c(z)SA(z)e(−

1
2
+M)φ(z)eikX(z)/2 , (5.20)

V
A
−1/2+M (z) = ∂̄M ξ̃(z̄) . . . ∂̄ξ̃(z̄)c̃(z̄)S̃A(z̄)e(−

3
2
−M)φ̃(z̄)eikX̃(z̄)/2 . (5.21)

Noting that each term has one more ξ than η and a factor of e(−
1
2
+M)φ+(− 3

2
−M)φ̃, which

saturates the φ-momentum of the disk, we can, as in the NS-NS case, drop the second

term in OL given in (5.10) from the computation and the same results follow. Note that

we are free to pick other representations of the NS-NS vertex. This choice is convenient

only in that it simplifies the relationship between Ŵ (Φ,V) and the closed string one-point

function. See also [33] for a computation of the R-R invariants without using this more

complicated vertex operator.

Given that one can compute the R-R one-point function, the reader will immediately

wonder if it is possible to compute the R-R charges of a given background. Here we offer

a few general remarks. We leave a detailed analysis to future work. In general, computing

the R-R charges using Ŵ (Φ,V) is difficult because of the on-shell constraint on the R-R

vertex operator. The on-shell constraint typically allows one only to compute the coupling

of the zero-mode of the R-R field to the brane, which gives something proportional to

the integral of the R-R charge over the brane world volume (including the infinite volume

factor for the brane world-volume). For the special case of the D-instanton, there are no

volume factors and the zero-mode of the R-R tadpole is proportional to the number of

D-instantons.

Even in the D-instanton case, however, this is not a manifestly topological quantity.

It is only for classical solutions Φ that we can interpret Ŵ (Φ,V) as being a closed string

one-point function. For example, since Ŵ (Φ,V) is linear in Φ, if we allow Φ to be an

arbitrary state, there is no way that Ŵ (Φ,V) could always be an integer. It appears, then,

that Ŵ (Φ,V) cannot be used to classify different Φ’s as having different charges off-shell.
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A. Computation of the surface term

In this appendix, we explain the steps between (4.9) and (4.10).

Define the adjoint action of Ψ by

adΨA = Ψ ∗A− (−1)gh(A)A ∗ Ψ . (A.1)

Note that because of the grading,

(adΨ)2A = adΨ2A . (A.2)

We also have

{QB , adΨ} = adQBΨ = −adΨ2 , (A.3)

where in the last step we use that Ψ satisfies the classical equations of motion. Now,

consider the two-point function with V1 = {QB ,O(i)},

A =
∞∑

n=0

(
n+1∏

i=1

∫ ∞

0
dTi

)
〈I|{QB ,O(i)}b0DT1

(
n+1∏

i=2

adΨb0DTi

)
V2(i)|I〉 . (A.4)

Impose a short distance cutoff on the length of the propagator,

Aǫ =

∞∑

n=0

∫ ∞

ǫ/2
dT

(
n+1∏

i=1

∫ ∞

0
dTi

)
δ(
∑

iTi−T )〈I|{QB ,O(i)}b0DT1

(
n+1∏

i=2

adΨb0DTi

)
V2(i)|I〉 .

(A.5)

Now, push the QB to the right:

Aǫ =

∞∑

n=0

∫ ∞

ǫ/2
dT

(
n+1∏

i=1

∫ ∞

0
dTi

)
δ(
∑

iTi − T )

{
−〈I|O(i)∂T1DT1

(
n+1∏

i=2

adΨb0DTi

)
V2(i)|I〉

−
n∑

m=1

〈I|O(i)b0DT1

(
m∏

i=2

adΨb0DTi

)
(
adΨ2b0DTm+1

)
(

n+1∏

i=m+2

adΨb0DTi

)
V2(i)|I〉

−
n∑

m=1

〈I|O(i)b0DT1

(
m∏

i=2

adΨb0DTi

)
(
adΨ∂Ti

DTm+1

)
(

n+1∏

i=m+2

adΨb0DTi

)
V2(i)|I〉

}
.

(A.6)

Note that some of the terms have derivatives on the moduli. Integrating by parts, these

derivatives can be made to act on the delta-function and interpreted as derivatives with

respect to T . We write

Aǫ = A1 + A2 , (A.7)
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with A1 given by the terms where the derivatives hit the delta-function,

A1 = −
∞∑

n=0

∫ ∞

ǫ/2
dT

∂

∂T

(
n+1∏

i=1

∫ ∞

0
dTi

)
δ(
∑

iTi − T )

{
〈I|O(i)DT1 (adΨb0DTi

)n V2(i)|I〉

+

n∑

m=1

〈I|O(i)b0DT1

(
m∏

i=2

adΨb0DTi

)
(
adΨDTm+1

)
(

n+1∏

i=m+2

adΨb0DTi

)
V2(i)|I〉

}
.

= −
∞∑

n=0

∫ ∞

ǫ/2
dT

∂

∂T

(
n+1∏

i=1

∫ ∞

0
dTi

)
δ(
∑

iTi−T )

{
〈I|O(i)DT1

(
n+1∏

i=2

{b0, adΨ}DTi

)
V2(i)|I〉

}
,

(A.8)

and A2 the rest,

A2 =
∞∑

n=0

∫ ∞

ǫ/2
dT

(
n+1∏

i=1

∫ ∞

0
dTi

)
δ(
∑

iTi − T )

{
−〈I|O(i)

(
n+1∏

i=2

adΨb0DTi

)
V2(i)|I〉

−
n∑

m=1

〈I|O(i)b0DT1

(
m∏

i=2

adΨb0DTi

)
(
adΨ2b0DTm+1

)
(

n+1∏

i=m+2

adΨb0DTi

)
V2(i)|I〉

+ δ(Tn+1)

n∑

m=1

〈I|O(i)b0DT1

(
m∏

i=2

adΨb0DTi

)
(adΨ)

(
n∏

i=m+1

adΨb0DTi

)
V2(i)|I〉

}
. (A.9)

To simplify this, note that the first term in the { }’s vanishes since

〈I|O(i)adΨ = adΨV2(i)|I〉 = 0 . (A.10)

This also kills the third term when m = n. We are left with

A2 =

∞∑

n=0

∫ ∞

ǫ/2
dT

(
n+1∏

i=1

∫ ∞

0
dTi

)
δ(
∑

iTi − T )

n∑

m=1
{
−〈I|O(i)b0DT1

(
m∏

i=2

adΨb0DTi

)
(
adΨ2b0DTm+1

)
(

n+1∏

i=m+2

adΨb0DTi

)
V2(i)|I〉

+ δ(Tn+1)〈I|O(i)b0DT1

(
m∏

i=2

adΨb0DTi

)
(
adΨ2b0DTm+1

)
(

n∏

i=m+2

adΨb0DTi

)
V2(i)|I〉

}
.

(A.11)

This vanishes since the second term in the { }’s is zero for n < 2, while the first term is

zero for n < 1. If follows that

Aǫ = A1 , (A.12)

from which (4.10) follows.
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π a

b

c

ha) b)

Figure 9: In a a typical state is shown with width π/2. In b, a modified state is shown which

reduces to the identity state near the midpoint. The lines ab and ac are to be identified as well as

the lines extending to the right of b and c as shown with the hatches. In the actual geometry of

interest the thin vertical strip of worldsheet to the left of cab would be of zero thickness.

B. Changing the height of a state by reparametrization

In this appendix, we briefly discuss why the height of an insertion Ψcl may be changed

by a reparametrization and, hence, a gauge transformation. In figure 9a a state is shown

in strip coordinates. To decrease the height of the insertion, we replace the region of the

state near the midpoint with the identity state so that it has no effect when inserted into

the propagator. The rest of the state is shrunk to a width h. This is shown in figure 9b

The important point to recognize is that the height h can be adjusted by simply

rescaling the identity and strip segments of the state in a way that keeps the whole length

of the state fixed. For example, if 0 < θ < π is a coordinate on the unit circle, we can

perform the reparametrization

θ̃(θ) =






ρθ θ < h

π
2 − π−2ρh

π−2h (π/2 − θ) h < θ < π/2

, (B.1)

where we also define θ̃(π − θ) = π − θ̃(θ). This map scales h→ ρh. Note that because the

identity state is invariant under symmetric reparametrizations which preserve the midpoint

and endpoints, there is considerable flexibility in the choice of θ̃(θ) in the region h < θ <

π − h.

Note also that picking ρ = π/2h leads to a singular reparametrization; the entire region

h < θ < π − h is mapped to the midpoint. However, as long as the state is inserted into

a larger worldsheet geometry, this transformation remains smooth. One may also worry

that θ̃(θ) could create problems if there are operators near the midpoint (points b and c in

figure 9b). Though we have no basis for doing so (as we do not have a regularity condition

on our string field), we assume that operators insertions near the midpoint are sufficiently

mild that this will not be a problem.
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